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What is a Hot Nucleus?

Nuclei formed in certain heavy ion reactions have high enough level
density and large enough angular momentum to justify a statistical
treatment.

«— high energy quasi-continuous spectrum
(high level density)

|

«~— low energy discrete spectrum

Equilibrium assumption: at a given excitation energy E and spin J, all
states have equal probability (microcanonical ensembie).

However, the nucleus is a finite system, so statistical methods must
be applied with care.



Grand Canonical Ensemble in Nuclei

¢ relevant macroscopic variables:

extensive variable intensive variable
energy E temperature T
spin J angular velocity w

particle number Z, N chemical potential p,, u.,

o representations related by Legendre transformation:

"~

F(T:rwwﬁp:.uﬂ) =E-TS-w: (3) - MP(L’%) . MH(N)
where F is the free energy and S the entropy

» expectations {-) computed with the density matrix for the grand
canonical ensemble

p=exp[~(H—w-J —pp,Z — p,N) /T]|



Level Density & Partition Function

o level density:
p(E,M,Z,N) = tr [6(E — H)8, 1.6, 16y 5]
e partition function (Laplace transform):

Z(T,w,, ftp, o) = / dE Z e~ (B-w:M-ppZ=~pmN)T p f2 pf 7 A7)
0 M,Z,N

tr {exp [— (H —w,J, — p,pZ — unN)/T]}
e inverse relation (Mellin inversion):
o502, = g [ ()[4 [ o) [ o)

X e (E ‘-"JZM J”pz_#nN /ITZ(T wz’ﬂp,pn)




Quadrupole Shapes
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Typical free energy surfaces for 1%y at (a) constant temperature T = 1 MeV; (b)
at constant angular veloeity w = 0.3 MeV. Here w is parallel to the z' intrinsic axis. The
contours are spaced 1 MeV apart. Notice the transition of the equilibrium shape (marked by
"+") from prolate to oblate as (a) the angular velocity increases from 0 to 0.8 MeV or (b) as

the temperature Increases from T = 0.8 MeV to T = 1.8 MeV.



l.andau Theory

e Free energy must be built from rotationally invariant combinations
of ay, and w:

F(T&waQZp) :F(T,O,(IQH)_%wlw_]-
F(T,O,szp) — F[}+A/62"“BIBSCOS33"}(+Cﬁ4—|-...
Iz’z"(T, 052#) = Iy — QRﬁ cos vy + 21162 + 2D62 Sinzf)/ 4o

e Deformation ay, is the order parameter for a phase transition:
— « = 0 = higher symmetry (spherical shape)
— a # 0 = lower symmetry (deformed shape)

o Analysis of Landau expansion gives universal properties of shape
transitions in nuclei.
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Nilsson Model

¢ Use cranked Nilsson Hamiltonian to find single-particle levels:

th’? 3
H=- 232 —khi 2 s+p (- B)y)] -w-j
1=1
where
- . o 2T |
w; = Woexp |- Eﬂcos Y= 5
IN -7
hivy = (41 MeV)A™Y? (1d:§ v )

e Include Strutinsky correction to find free energy:
F(T,w,p1,8,7) = Ba+ (F — E) - TS+ 1Al + AF

where E and S are calculated using the Fermi occupation num-
bers f; = {1 + exp[(e; — 1)/T|}~!. Here Ey and E are the liquid
drop and Strutinsky-averaged energies, respectively.



Static Path Approximation (SPA)

The Hubbard-Stratonovich transform expresses the trace of a
two-body interaction as a path integral of a one-body expression:

irfexp (5220 | = [ Dio) exp (557 ) trexn (- 227 )]

Thus the partition function for a two-body Hamiltonian can be
written as the functional integral of the partition function for an
effective one-body Hamiltonian.

Z = / Dlo] Zelo(8)]

The Static Path Approximation consists of reducing the path inte-
gral to a simple integration by considering only time-independent
paths.

The Mean-Field Approximation consists of choosing the free en-
ergy corresponding to the maximum of the SPA integrand.



Thermal Shape Fluctuations

Large fluctuations around equilibrium shape may exist due to
finiteness of nuclear system (~ 500 d.o.f.s).

SPA and Gibbs theory gives probability distribution of deforma-
tions in a nucleus:

Plas) = 2~ exp [~ F(a)/T]

where F(a) = F(T, w,, up, ttn; a2,) is the free energy as a function
of quadrupole shape «, and

Z= /d%{gp exp [— F(a)/T]

is the SPA for the exact partition function.

The measure d°as, = 3%|sin 3y|dfdydQ? includes fluctuations in
intrinsic shape (3, ) and in Euler angle Q = (¢, 8, ¢).
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Observables

» The value of any adiabatic observable © averaged over the shape
distribution of the grand canocnical ensemble is

(@)ee = [ P, P(a)B(e)

¢ The expectation of © over the grand canonical ensemble (T', w,
1, By representation) can be converted to one over the micro-
canonical ensemble (E, J, Z, N representation):

1 (1 [ o [ [P i
(O)mee = 5577 /_md(“f)/o d(w?)/g d(?)/g 4(7)
Z(T, Wsy Hp, P'vn) (E—w,M—pp Z—punN}/T
p(E’ M? Z, N) e P (@)gce

X




Example: Giant Dipole Resonance

Giant Dipole Resonance (GDR): collective oscillation of the proton
center-of-mass with respect to the neutron center-of-mass.
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GDR Equation of Motion

e Hamiltonian: H(D,P) = iP?+1D-E’-D - w x (D x P), where
D is the dipole moment and P its momentum

e Equations of motion {with damping term):

D=P-wxD-II'D
P = —EQ-D—wxP—%r-P

where

E = energy of osc. mode o (axis length)™!
I = intrinsic damping width = I'y (E/ Ep)°

» Note that E = E(ay,) and I' = [(a3,) depend on deformation and
are matrices in the laboratory frame.



GDR Cross Section

Absorption cross section is related to Fourier transform of dipole
autocorrelation function:

2me
T o dt iet/h DT
bl 3(:752 / © Z

Solution to e.0.m. shows the Fourier transform of 3 D/ ()D,(0)
is the sum of nine Lorentzian shapes:

fr =Ty€’ / [(62 — E’ﬁ)2 + I‘ﬁez]

The average (-) is performed over all shapes a;,,.

Features:
— includes shape fluctuations

— only three free parameters (E;, I'y, 6), determined from
ground-state GDR properties



Prolate Triaxial Oblate
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Example: Level Density

e SPA Level density involves integration over shape distribution
and inversion of Laplace transforms:

-d:fau__ X 1 7t » 27t 1 21 1
E.M.Z N)= I T / d(—)/ (—1)/ f(-)
pLE M, 2, N) / 327 / ( <T> Jo 17 Jg ; 7 Jy T

—i 0z

v plE—wM—py 2= N1 exp|—F(T,w-, ttp, pin; )/ T |

e Evaluation of the 9 integrals:
— 1 done analytically

— 3 via analytic application of method of steepest descents
(saddle-point method)

- 1 via numeric application of method of steepest descents
- 4 done numerically using Gaussian integration
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Time-Dependent Fluctuations

¢ |f the shape fluctuates too rapidly, observables (such as D) do
not have time to respond to the shape changes.

o This nonadiabaticity results in “motional narrowing” of cross sec-

tions and could explain overestimates of GDR width by the adia-
batic theory at high temperature (T > 2 MeV).

e Stochastic Approach: use a Brownian motion model (Langevin
Equation) to describe ay,(t) trajectories.



Stochastic Shape Changes (I)

¢ Langevin equation:

Béw, + xto, + o = fau(?)
T S oo, SN
inertia damping —~— random force

external force
e The random force is a Gaussian random process:
(fE,u) = 0, (pr(S)f;p(t)) = 65#,,5(3 — t)

e Fluctuation-dissipation theorem: £ = 2T/ x.



Stochastic Shape Changes (ll)

e Overdamped case:

O°F
3&2;;3{121‘,

: 1 OF 2 1
Qo = —— + fou(t) for (-X—) > Emax{

|

e Fokker-Planck equation for probability P(«,t):

dO*P
Oz, 00,

o°P 0 laF
Oag, Do, Xaof;#

P) + 5¢°



Stochastic Shape Changes (lll)

e Stationary solution / equilibrium distribution:

d
EP(&, t) =0
implies
P(a,t) = Pu(a) = exp[—F()/T]

e Convergence to equilibrium:

% / &, [P(a)In P(a)] > 0

50
Pla,t — o0) = FPogla)
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GDR with Dynamically Changing Shape

The equations of motion are the same as in the adiabatic case, except
they must be solved numerically since E(as,) and F(ay,) are now time-
dependent random variables.

We use a stochastic version of the Runge-Kutta method to solve the
equations numerically. Several hundred trajectories must be consid-
ered to get statistically significant results.

Once again, the Fourier transform of the dipole autocorrelation function
Z;_;.(DL(f)Du(O» is the absorption cross section.

The new parameter y determines the degree of adiabaticity.
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Shape Transitions in the Shell Model

e Basic assumption: The highly excited nucleus can be described
as an incoherent mixture of Hartree-Fock (HF) configurations at
a given energy.

e Since we assume a basis of static HF solutions, the dynamics
comes entirely from the residual interaction. For high enough
level density, the rate of depopulation for a state : may be calcu-
lated from Fermi’s Golden Rule:

2 .
L= % Z I({'."’|Ul'esidual|f)\2 5(Ef - Eﬂ)
f

where the sum is over HF states f differing by the orbital assign-
ment of two particles.

» Because each HF state has its own shape, the nuclear shape will
change with each transition. However, the final states f will not
differ greatly in deformation from the initial state ¢ because only
two particles have changed orbit.






Diffusion Model
e We discretize deformations 8; and construct a rate equation for
populations P, = P(8;,1):

dP, 32P
=TIP_ o'E, + TP =T(A
d i~ + +1 ( ﬁ) 8,@2

NN
\J\/\/\/

e In the continuous limit we have the classical diffusion equation:

P 9P
5t~ Digg 032

with diffusion coefficient D3 given by the transition rate weighted
by the square of the jump in deformation:

Dy =253 (6= By [l 1) 608 - )
f



Simple Estimate of D; (1)

To estimate D we separately calculate the lifetime of the HF configu-
rations and the mean-square change in quadrupole deformation when
two particles change their orbits.

e mean-square change in deformation:

— The mean-square dispersion in harmonic oscillator shell with
n quanta of excitation is

(0.2 = ( h )Zn(n-l—S) |

me 2

— Core polarization increases the quadrupole moment by
approximately a factor of two.

— The quadrupole moment and the deformation are related by

Q= 6\/EAR{12£3
47

for near-spherical shapes.



Simple Estimate of D; (ll)

— Therefore the 3 dispersion is
((ﬂt - ,Bf)g) ~ 68n(n + 3)A”8/3 o~ 90/A2 -

o lifetime of HF configurations:

— From particle transfer reactions we have empirical informa-
tion about lifetimes of single-particle states at moderate ex-
citation:

I'p(Fey) = Ee’/(20 MeV) .

The amount of phase space available at temperature T is
related to an excitation energy above a cold Fermi sphere
by Eex = 7T

— The average number of particles is determined by integrating
the Fermi function:

> d
N, = / dnle /T 1 1]7! x In2 d—tT
0

SO
Ny + Ny~ 3In2 AT /¢

since dn/de = 3A/4¢;.



Simple Estimate of D; (lll)

— The thermal width is given by the single particle width times
the average number of particles and holes:

[ thermal & AT [e¢/(1.9 MeV) = AT?/(61 MeV?)

for e, = 32 MeV.

o diffusion coefficient:

Ds = {(8i ~ B5)%) Tthermal = T°/A(6.9 MeV?)

e example: for °Ge at T = 2.5 MeV, Djs = 28 keV.



Microscopic Calculation of the Diffusion Coefficient

We calculate the {(i|vesiaual| f) matrix elements in

DQ == — Z (Qz — Qf)z |(ilvresidua]|f>|2 §(Ef — E?)
f

for a Serber-torce é-function residual interaction using Nilsson model
wavefunctions and energy levels. The sum above is estimated using
Monte-Carlo methods.

The strength of the pp and nn residual interaction is determined from
a G-matrix parameterization appropriate for valence particles. The np
strength comes from an empirical interaction extracted from the spectra
of odd-odd nuclei.
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Calculated Diffusion Coefficients
(T = 2.5 MeV)

Nucleus T (MeV) Dj(keV) Dg/T (1073)

2“Mg 3.10 30. 10.0
%Ge 26.3 7.3 0.28
110G 29.5 4.6 0.16

158Ey 56.5 3.8 0.067



Other Theoretical Estimates of Dy

e Diabatic Friction (Nérenberg, 1981): Dissipation arises from the
diabatic production of particle-hole excitations which are subse-
quently equilibrated by two-body collisions. This yields the same
functional dependence of A and T as we have and gives humer-
ically similar results.

e Linear Response (Yamaji et al., 1988): Inertia, friction, and stiff-
ness coefficients are calculated within a locally harmonic approx-
imation in linear response theory.

o Memory-Dependent Transport (Ayik et al., 1991): Memory effects
are added to a Boltzmann transport equation. The diffusion co-
efficient is expressed as a collision integral.



Experimental Measurement of D;

e Prescission neutrons: The time to reach the fission saddle point is
directly related to the diffusion coefficient. Measurements of pre-
fission neutron multiplicities can be compared to statistical model
calculations to infer the diffusion coefficient.

e Dipole Narrowing: The reduction of the GDR cross-section width
due to motional narrowing can be used to estimate the adiabatic-
ity parameter y, which is related to the diffusion coefficient by

DI..-j = T/X



Comparison of Theory and Experiment
(A =158, T = 2 MeV)

Source D3 Reference
Theory:
Present calculation 2.0 keV  Bush et al. (1992)
Diabatic friction 2.7 keV  Norenberg (1981)
Linear response 12.4 keV  Yamaji et al. (1988)
Experiment:
Prescission neutrons > 40 keV  Gavron ef al. (1987)
Dipole narrowing 50 keV  Alhassid et al. (1990)



Conclusions and Prospects

Shape fluctuations must be considered when studying hot rotating
nuclei.

The giant dipole resonance is observably affected by shape fluc-
tuations. The fluctuation theory provides good predictions of the
experimental GDR cross section.

Current theory predicts a nucleus which is more dissipative than
available experiments seem to indicate.
— Make improved theoretical estimates.
— Reanalyze experiments to better extract Dz and seek more
experiments from which Dz can be extracted.

Work is now underway to account for the effect of time-dependent
shape changes upon level densities in hot rotating nuclei.
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